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A HIGH ORDER FINITE DIFFERENCE SCHEME WITH SHARP SHOCK

RESOLUTION FOR THE EULER EQUATIONS

MARGOT GERRITSEN AND PELLE OLSSON

ABSTRACT. We derive a high-order finite difference scheme for the Euler equations that sat-

isfies a semi-discrete energy estimate, and present an efficient strategy for the treatment of
discontinuities that leads to sharp shock resolution. The formulation of the semi-discrete

energy estimate is based on a symmetrization of the Euler equations that preserves the ho-

mogeneity of the flux vector, a canonical splitting of the flux derivative vector, and the use
of difference operators that satisfy a discrete analogue to the integration by parts procedure

used in the continuous energy estimate. Around discontinuities or sharp gradients, refined

grids are created on which the discrete equations are solved after adding a newly constructed
artificial viscosity. The positioning of the sub-grids and computation of the viscosity are aided

by a detection algorithm which is based on a multi-scale wavelet analysis of the pressure

grid function. The wavelet theory provides easy to implement mathematical criteria to detect

discontinuities, sharp gradients and spurious oscillations quickly and efficiently.

1. INTRODUCTION

High-order finite difference schemes are attractive for computing Euler flows that have large smooth

flow regions. Their simplicity makes coding easy while their high order of accuracy allows for the use

of coarse grids in the regions where the flow is slowly varying. In multi-dimensional applications this

reduces both computational costs and memory requirements significantly. In the past, two problems

prevented wide spread use of these schemes. Firstly, it was not known how to construct boundary dif-

ference operators of sufficient accuracy that lead to (strictly) stable numerical schemes. Secondly, the

schemes introduce spurious oscillations at the shock that need to be damped by filtering or addition of

artificial viscosity. Sharp shock resolution using previous techniques has required considerable tuning.

In this paper we address both issues. We devise a high-order finite difference scheme that satisfies

an semi-discrete energy estimate and present an efficient strategy for the treatment of discontinuities

that leads to sharp shock resolution.

Stability of initial-boundary value problems can be ensured by the energy method. In general

the method consists of an integration-by-parts procedure which introduces boundary terms that

are subsequently bounded or eliminated to obtain the desired energy estimate. In [9, 17], Kreiss,

Scherer and Olsson developed a semi-discrete analogue of this procedure for linear equations and

special finite difference operators. Olsson showed that extension of the energy method to nonlinear

systems is possible [18]. He employs a splitting of the flux derivative vector after symmetrization of

the system. To facilitate the derivation of the energy estimates for the Euler equations, the variable

transformation should preserve the homogeneity of the flux vector. We show that these conditions

can be met for a specific class of transformations.
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Inspired by the stability results we devise a high-order scheme using the aforementioned trans-

formation and splitting of the flux derivative vector. It results in a system of ordinary differential

equations that is solved using a TVD Runge Kutta time integration. We refer to it as the Split
High-Order Entropy-Conserving (SHOEC) scheme.

In the second and main part of the paper we present an efficient strategy for the treatment of
discontinuities. Our purpose is twofold:

• Control spurious oscillations without sacrificing the overall

computational efficiency of high-order methods.

• Resolve shocks sharply without having to adjust parameters.

In achieving these goals the stability properties of the method should not be destroyed. Our strategy

is based on local grid adaptation. The smooth parts of the flow are resolved on coarse grids. Directly

around the shocks finer sub-grids are constructed on which we solve the discrete equations after

adding an artificial viscosity term. We use the grid adaptation techniques developed by Berger [1]
and Zhu [25].

For schemes of even order, Gustafsson and Olsson [5] derived scalar artificial viscosities for con-

servation laws that support one- or two-point stationary and moving shocks. This theory does not

directly apply to the Euler equations, but following a similar approach :we can construct a scalar

viscosity that supports near one-point shocks. The viscosity is determined completely by the flow

variables on either side of the shock, and gives equally good results for the SHOEC-scheme.

The positioning of the sub-grids is aided by a detection algorithm based on a multi-scale wavelet
analysis of the pressure grid function which locates potential shocks and spurious oscillations. It also

supplies the information needed to compute the artificial viscosity terms. The detection algorithm is

derived from a noise-detection algorithm developed by Mallat and coworkers [13, 14] in signal analysis.

Most existing shock detection algorithms search for maxima in the first or zero-crossings of the

second derivative of grid functions. The derivatives are evaluated numerically at the scale of the grid.
At this scale it is hard to distinguish between maxima that belong to spurious oscillations and those
that correspond to shocks. Besides, it is difficult to extract information about the shock states when

the discrete data are distorted by oscillations. If instead the grid function is analyzed on both the

scale of the grid and a sequence of larger scales, these problems are resolved; the behavior at the

larger scales is determined by phenomena such as shocks or sharp gradients, while local oscillations
only influence the smaller scales. The number of available scales is limited because we work in a

discrete and finite domain. The question is how to construct a reliable algorithm to determine the

local behavior of the grid function based on this limited information. The wavelet theory supplies the

answers. In a multi-scale wavelet analysis a function is convoluted with a family of wavelets, each

varying in position and representing a different scale or frequency. For a special class of families a

direct correlation exists between the local regularity of the function and the behavior of small, easy-
to-determine, sets of wavelet coefficients. Moreover, they allow the formulation of a fast wavelet

transform which leads to an efficient detection algorithm. The underlying wavelet theory is presented
and the choice of the wavelet family is motivated. We thereby focus on issues that are relevant in the

context of computational fluid dynamics.

The sharp shock resolution and the computational efficiency of the above described SHOEC-scheme

with local grid adaptation are illustrated by numerical experiments for the one-dimensional Euler

equations. Both shock detection and artificial viscosity are generalizable to multi-dimensions. We

emphasize that the resulting scheme is a shock-capturing scheme as we do not require any a-priori
knowledge of the shock location.

The paper is organized as follows. We start by presenting the Euler equations and relevant consti-

tutive relations in section 2. Section 3 gives the derivation of the SHOEC-scheme. In section 4 the

matrix and scalar viscosity are constructed. We give relevant wavelet theory, devise the shock detec-

tion algorithm and discuss specific implementation issues related to the Euler equations in section 5.



In the final two sectionswepresentresultsandconclusions.

2. THE EULER EQUATIONS AND RELEVANT RELATIONS

The Euler equations in conservation form express the conservation of mass (p), momentum (m)
and energy (E). They are given by

(2.1) u, + f(u):_ = u, + f,u_ = O,

with state vector u and flux vector f of the form

[ ](2.2) u = , f = pv2+p .

v(E+p)

The variables v and p are the velocity and pressure of the gas. The latter is related to u through the

equation of state for a polytropic gas

1 2
(2.3) p = (7-1) (E- _pv ),

where 7 = 1.4 is the ratio of specific heats %/c_. The conservation of mass equation, Pt = -(pv)_ =

-m_, is often referred to as the continuity equation. The flux vector f(u) is a homogeneous function
of order one, i.e., f(Ou) = 8f(u). The non-symmetric Jacobian matrix f, is equal to

[ 0 1 0](2.4) f, = -(3- 7) v_/2 (3- 7)v 7- 1 .

(7-1)v3-TvZ/p 7E/p-3(7-1)v2/2 7v

Its eigenvalues are A1 = (v - c), )_ = v, and _3 -- (v -{-c), where c = _ is the speed of sound.

Viscosity and thermal conduction are neglected in the formulation of the Euler equations. Because

of the nonlinear and hyperbolic character of (2.1) shock waves can be formed at which these effects

are of great importance. Additional jump conditions (the so called Rankine-Hugoniot conditions)

are needed that relate the states u_ and ur on the left and right sides of the shock wave. The

Rankine-Hugoniot equations for a shock moving with a velocity s are

(2.5) f, - f= = s(u,-ur).

The shock states ut and ur _atisfy the Lax entropy conditions

)_k(Ul) > $ _> "_k(Ur), )_,k-l(Ul) <_ S < _k+l(Ur), k -- 1, 3.

In order to simplify the analysis of the equations when there axe finite jumps in u and f, Roe
introduced the lineaxization

(2.6) fl - f_ = A '_ (u_-u,.),

where A t_ = f,(fi) is the Jacobian matrix in the Roe-variables fi, computed such that (2.6) is exact

[20]. It follows from (2.6) and (2.5) that A_ = s. The vector fi is determined by

and the weighted averages

fi=

= vf_p_,

v'-  vr + j- v, = j-f; + H,
+ J-f; ' v'77+v'7= '

where H is the enthalpy of the system defined by H = (E + p)/p.



The entropy S given by

S = c_ log (pp-'Y) + constant.

is used in section 3 to formulate entropy functions of (2.1). In the remainder of this paper we will

use a simplified scaled expression for the entropy of the form

(2.7) S = log (pp-'V).

Smooth flows are isentropic, which means that

(2.8) DS cgS cgSD---?= a--7+ = O,

where D/Dt denotes the material derivative. In other words, the entropy is constant along streamlines

for isentropic flows. Viscous effects and thermal conduction cause the entropy to increase over a shock

and so equation (2.8) is valid outside shock regions only.

3. DERIVING TIIE SHOEC-scIIEME

We consider the system of conservation laws

(3.1) ut+h- 0, u, f6_ d, x6(x0,Xl), t>0,

=

At the boundaries x = x0 and x = xl of the domain we prescribe data for the in-going characteristics

in the general form

(3.2) _x(x,,t)=_b,(t), i --- 0, 1,

where _z are the in-going characteristic variables.

We employ the energy method to ensure stability. The key to establishing an energy estimate lies

in a special splitting of the flux derivative vector f,, which we refer to as the canonical splitting, given

by equation (3.6). To derive it we first write f, as

(3.3) f_ = (f - F)_ + F, = (f - F), + F_u,,

where F = F(u) satisfies Euler's inhomogeneous differential equation

(3.4) F,,u = -F + f,

F(O) = f(O),

and has the form

/ol(3.5) F(u) -- f(Ou)dO.

Equations (3.3) and (3.4) now give the desired equation

(3.6) f_ = (F,,u), + F_ = (F,,u),: + F,u_.

The energy method applied to equation (3.1) yields

d
_llull = -2(u,A) = -2(u,(F,,u),)- 2(u,F,u_).

The second equality follows from (3.6). If F, is symmetric we obtain

dllull = -2uF,,ul:'o.

To arrive at a true energy estimate we need to control the boundary term(uF, u), for which we use

the boundary conditions (3.2). However, these boundary conditions are related to f, instead of F,.
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In orderfor the character;,_,tir boundary condition to work we must require that f, and F_ have the

same inertia (i.e., the same number of positive and negative eigenvalues).

Equation (3.5) shows that F, is symmetric provided fu is symmetric. For the Euler equations this
is not true however, and thus (2.1) must be symmetrized before the energy estimate can be derived.

3.1. Symmetrization using entropy functions. Symmetrization of systems (3.1) is possible

through the use of entropy functions.

Definition 3.1. A scalar function r/is an entropy function for a system of conservation laws (2.1) if

• r/satisfies

(3.7) r/_f_ = q_,

where q(u) is a scalar function called the entropy flux, and r/, = [r/u,,...,r/u,] denotes the

gradient of ,7.
• r/is a convex function of u or, equivalently, r/,_ > 0.

Multiplication of (2.1) by r/, shows that smooth solutions of this system also satisfy the scalar

entropy equation

(3.8) rl,,ut + _lufuU_ = _h + q,: = O.

Mock [16] proved that if an entropy function r/exists for a system of equations (2.1) then the so

called entropy variables w, given by w T = r/_, symmetrize the system. This means that u = u(w) and

](w) = f(u(w)) have symmetric Jacobians with respect to w. The transformed system is

(3.9) u, = u, = u w, + = o.

Harten [6] derived a family of entropy functions using the equation for conservation of entropy (2.8).

From this equation it follows that

(3.10) ph(S)t -F pvh(S)_ = O,

for all differentiable functions h(S). If we multiply the continuity equation by h(S) and add equation

(3.10) we obtain

[ph(S)], + [pvh(S)]_ = O.

This is precisely of the form (3.8) with r1 = p h(S) and q = pv h(S).

The entropy variables w determined by w r = r/, are

(7-1)]_ [ 3_e_
(3.11) w-P iETT_l(h/h-(T+l)) -pv p .

The state vector u as a function of w reads

u P
(3.12) - (7_l)h [w3 -w2 wi-h(h/]i-(7+l))] r

The requirement that _/be convex is equivalent to the requirement that wu be positive definite because

w_ = r/u_. Then, the transformation w = w(u) is well-defined as w. is nonsingular.
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3.2. Energy estimates for the continuous and semi-discrete equations. To obtain the con-

tinuous energy estimate we apply the canonical splitting to the flux vector derivative f_ and the ut

term. The latter splitting is possible because u_ is symmetric. Thus, we define the vector quantities
/J(w), F(w) E/R d that satisfy the equations

Uww = -/.]+u, and

__w = -_+].

As in (3.5) they satisfy

(3.13)

(3.14)

1_](w) = u(Ow)dO, and similarly

['(w) = ](Ow)dO.

The above equations show that symmetry of u_ and ]_, implies symmetry of J_ and Uw.
The canonical splitting of ]_ and ut in (3.9) yields

(Uto_), + U_, + (,_to_), + F_w_ = 0.

We scalar multiply by w to get

(3.15) (_TU_w), + (_TFtow)_ =0,

and then integrate with respect to x which gives

d 2

(3.16) _llwllo : -- wTFw w ]:_, where

f[(3.17) Ilwll_ = wTf-]towdx.
o

Equation (3.13) shows that if u_ is positive definite f),o is also positive definite, so the norm (3.17) is
well defined.

Henceforth, we assume that u(w) and ](w) are both homogeneous functions in w:

(3.18) u(Ow) = 0_ u(w)
](ow) = o_](w) ' o, _ • n_.

They satisfy Eulers differential equation, i.e., ],,,w = l_w and u,,,w = _u. The homogeneity of ] allows

us to easily relate the right hand side of (3.16) to ]_ (inertia condition). The homogeneity of u(w) is

necessary in the derivation of the semi-discrete estimate. For the Euler equations we can construct
entropy variables that satisfy these homogeneity constraints.

Equations (3.14) and (3.18) give

(3.19) ._(w) - O_d0](w).

The integral exists if and only if _ > -1 t, in which case we have

1 ](w), _ > -1.
(3.20) F(w) - _ .7. 1

1Note that a homogeneous function ](w) satisfies Eulers differential equation ]tow - fl]. If fl < 0 and
if ] is to be defined for all w in a neighborhood of 0, then ] = 0. However, in our applications at least
one of the elements wj of the vector w will be positive. Thus we can find a non zero solution of the form

] (w ) = w _ -I w-x _ _ w._) for some function g
JY_'toi'''" ' toi ' toj '''" ,toi



Thus, we can write the canonical splitting of f= as

(3.21)

Similarly we obtain

(3.22)

and

1 1 -
/, - (]_w). + _--=../_w, -

/3 + 1 p+l
/3 L+ 1

/3+1

1
U(w) - u(w), /3 > -1,

+ 1

(3.23) u, - ut + -z-:_._ u,_wt.
/3+ 1 p+l

Although integral (3.19) only exists for/3 > -1, the splittings (3.21) and (3.23) are valid for all
/3 ¢ -1 since f_ow= = f_ and u_w_ = u_ always hold.

Equation (3.20) leads to

(3.24)

Furthermore

d 1 wTi, w i==,o. 11 11o- 1

Ilwll = wTV'°wdx - /3+ 1 wru' wdx - 111wl12.
o o

The following estimate ca- [__w be shown [18]

d 2
_llwll,, _< ¢o_Az(w(=o,t))¢o + CTAz(w(xa,t))¢,,

where Az(w(xi, t)) are the absolute eigenvalues corresponding to the in-going characteristic variables

at the boundary in question. As u_ and Az both depend on w this is not an energy estimate in the

usual sense. But as they are both positive definite we will refer to the inequality as a generalized

energy estimate.

When discretizing the equations we apply the canonical splitting only to the spatial variables to

retain a system of ordinary differential equations (ODEs). Using (3.21) the resulting semi-discrete

equations are

( /3)D]-( 1 )(3.25) u, = - _ _ ]wOw, 13 # 1.

Here we use bold notation to distinguish discrete variables from' continuous variables. Grid vectors

like u are given by u T T r r= (U 0 ,U 1 , = 0, n.... ,u,,), where ui fi IRd, i ..., The difference operator D
is defined as

1 rni

(3.26) (Du)j =_ -_ _ djku,, j = 0,1,...
k--.I

The matrix f_ denotes the block diagonal matrix whose blocks are the Jacobians f_(w,).

It can be shown [19] that u will satisfy the analytic boundary conditions if the initial and boundary

data satisfy suitable compatibility conditions. In much the same way as in the continuous case, we

can derive a generalized energy estimate for the semi-discrete equations (3.25) for difference operators

that satisfy a summation-by-parts principle (B.1) [9, 23]. The second and fourth order difference

operators that are used in the computations are given in appendix B. The second order operator is

second order in the interior and first order on the boundary, and the fourth order operator is sixth

order in the interior and third order on the boundary.



3.3. The entropy variables for the Euler equation. The homogeneity requirements of f(w)

and u(w) restrict the choice of entropy function. Equation (3.12) shows that u(w) is homogeneous
provided the terms h/]t and (7 + 1) in the expression for ul = p have the same dimension. Thus,
hilt = to, where K is a constant, and consequently

(3.27) h(S) = Ke "s = K(pp-_)_, K, t¢ # O.

This exponential family leads to an homogeneous function u(w) that satisfies u(Ow) = OV_TZu(w)

which follows from (3.12). Functions h(S) of the form (3.27) were als0 discussed by Harten [6].

Following his notation we choose t¢ - 1/(a+7), a E/R. It follows that f_ = (a+7)/(1-7). Below it
is shown that ](w) has the same homogeneity constant. Thus, for a = 1 - 27 the flux vector ](w) is

homogeneous of order one just as f(u).

Now, (3.11) and (3.12) yield

p* a- 1 T

(3.2s) w = 7 [u3+ _ Tp - u2 u, ] ,
a--1 .

(3.29) u = P*--p[wa -w2 w, 7---T p ]T,

where

(3.30) P* = X eSl(_+'v) = X (pp-,)!/(_+,),

with X = K _.L The variable p* satisfies an equation similar to the equation of state (2.3)tr+7 "

_ (7 - 1) / 1 w]
(3.31) p* _, w, - --- \)

a 2 w3

The pressure p can be expressed in terms of p* and w as

i w_ ) V(1-_)p= _ ((p')°(3.32)

The flux vector

(3.33)
W2 '_--_ ,x] T-P -w_ "_ + f (w,+ T-:-i-_lp_ .](w) = p" w_ _ -

The homogeneity of ](w) follows from equations (3.32),(3.31) and (3.33). The matrices wu and ],_

are found in Appendix A. The convexity condition on the entropy function given by _/= ph(S) leads

to the conditions X < 0, and a < -'y or a > 0. This excludes the unacceptable case _ = -1. We
choose X --- -1.

The equations (3.25) are solved in time by the TVD Runge--Kutta scheme formulated in [22]. For

the system of ODEs u, = L(u(w)), it computes the solution u "+1 at the (n+l)st time step according
to

fil = u" + AtL(u"),
(3.34) fi_ = 3/4u" + 1/4fi_ + 1/4 At t(fi_),

u "+' = 1/3u" + 2/3fi_ + 2/3AtL(fi¢),

with time-step /Xt and intermediate variables fi_ and fi2.

Here, L(u(w)) - -(_+_)D]- (]_) LD,_.
The variable p* is the most computationally intensive term because of the exponentials in p and

p. In the discrete equations (3.34) it appears in wi and its reciprocal in ]_. For isentropic flow the

computations simplify; p* is constant and is cancelled. We can use this simplification on the coarse



grid, outsidethe shockregions,wherethe flow is smooth.We notethat for severalvaluesof a the
computation of the exponential terms is fast. For a = 1 - 27, for example, p" = _p-2Sp-3S.

3.4. Non-conservative form. It is well known that if a scheme is in conservative form, the com-

puted shock speeds will be correct (see, e.g., [10]). This condition is sufficient, but not necessary.

Tadmor [24] showed how to obtain second-order schemes for initial-boundary value problems that are

entropy stable and in conservative form. It is however unknown if such schemes exist for higher orders
of accuracy. The SHOEC scheme (3.25) is not written in conservative form. However, in experiments

the shock speed has been found to be correct. Below, we show the error in shock location found for

a single moving shock after long time integration (number of time steps is O(103)) as a function of

the step size. It is plotted against the step size. Computations are done in double precision. In all

experiments, the error was of the order h/lO. Clearly, we can draw the conclusion that the computed
shock location is correct.

xlo"

I i i i t

0.01 0.03 0.05 0.07 0.09

h

0._1

FIGURE 1. Error in shock location versus grid size h.

4. SCALAR ARTIFICIAL VISCOSITY

Artificialviscosityisadded to the discretescheme on the refinedgrids to controlthe spurious

oscillationsgeneratedaround shocks.We derivea scalarviscosityforconservativedifferenceschemes

of even order that givesapproximate one-point stationaryand moving shocks. It isdetermined by

the flowvariablesand givescomparable resultsforthe SHOEC scheme.

4.1. The shock profile.Followingthe approach in [5]we considerfinitedifferencesolutionsof (2.1)

with the Riemann initialcondition

{ uz z < 0
(4.1) U(2, 0)

ur x>0.

The shock states uz and ur are connected by a k-shock. For simplicity, we furthermore assume that

uz is the downstream (supersonic) shock state and that the flow is to the right, so that Ak = v - c.

Applying the coordinate transformation

y -- X -- st,

r = t,



since u_

(4.3)

(2.1) is changed to the stationary problem

(4.2) (f - su), = O,

u(y,O) = ( urul y>_O,Y<0'

= 0 in the (y, r)-coordinates. Adding artificial viscosity we discretize (4.2) as

Do(f_-su_) = hD+ED_ ul.

or, for constant E,

(4.4) fj+,- fj-1- s(u:+l-Uj_l) = 2E(uj+, - 2uj + U:-l).

E is a positive definite matrix. Scalar viscosities correspond to E = ¢I,, > 0, with I the identity
matrix. The difference operators are defined by

1 1 1

Dou_ = _-_(_j+l-'Uj_l), D+ul = "_(ui+l-uj), D_u¢ = "_(ui-u__l),

where h = Xj+l - xj is the uniform mesh size.

The discrete system is subject to the boundary conditions

lim uj = uz, lim uj = u,.
j .-.- oo j -..+oo

4.2. Supporting approximate one-point shocks. We are interested in matrices E that support
viscous shock profiles consisting of the states ul, ur and an intermediate state urn. The state um is

needed in practice to allow for the representation of shocks that are not positioned in the center of a
grid cell 2

We obtain the following equations at the points x = -h, x = O, and x = h:

(4.5) fm -- ft -- S(Um -- U,) = 2E(um- Ut),

(4.6) f, - f, - s( u, - u:) = 2E(u, - 2um + u_),

(4.7) fi - f,, - s(u_ - urn) = 2E(um - ur).

At all other grid points, the equations are trivially zero. The left hand side of (4.6) vanishes because

of the RH conditions which gives um= (u, + u,)/2. As fi = fl + s(u: - u,), equations (4.5) and (4.7)
are in fact identical. For the Euler equations however, equation (4.5) can not be satisfied exactly for

scalar viscosities E = eI (see also [7]). Consider the equation corresponding to fl = pv in (4.5):

(4.8) p,v, - pmVm = (2, + s)(p, - p,_).

We have Pm = (P, + p_)/2 and p,,_v,,_ = (p, vz + p_v,)/2. Consequently,

(4.9) p,v: - p_v_ = (2, + s)(p, - p,).

The RH conditions require pzvt - p_v_ = s(pt - p_), and so 2e(pl - p_) = 0, which cannot be fulfilled
for, > O. Also, for scalar E equations (4.5) and (4.7) lead to

(4.10) f,n - fa = (s + 2,) (urn - u,),

(4.11) f, - f,_ = (s - 2e)(u, - u_).

Equation (4.10) represents a k-shock between states ut and Um moving with speed (s + 2E), while

(4.11) represents a k-shock between states u,, and ur moving with speed (s - 2e). The interaction
between two such shocks generally results in the formation of a k-shock between ul and u_ as well as

2(4.4) does not support zero-point shocks for E > 0. The left hand side of (4.4) vanishes because of the RH
conditions. This leads to E(u: - ur) = 0, which can only be satisfied for u_ = ur.
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a contactdiscontinuityanda rarefactionwave[2], whencethe abovedescribedconflictfor the Euler
equations.But, assuming(4.10)and (4.11)aresatisfied,a scalarviscositycanbederivedthat leads
to approximateone-pointshocks.UsingRoe-linearizationequation(4.10)becomes

Amt(um - u,) = (s + 2e) (urn - u_),

where A mt is the Roe matrix determined by the states ul and Urn. Thus, (urn - ut) is an eigenvector
of A _t with eigenvalue (s + 2e) = )`_i, or

= - s)

to the left of the shock. Similarly, e = 1/2(s - )`_m) _ 1/2()`_" - s) to the right of the shock. This

choice of scalar artificial viscosity corresponds to that used by Jameson in [7]. Since )`_ > s, )`_r = s

and the jump [ut - urn] is less than the jump [ut - ur], it can be expected that )`_"_ > s also. In

practical applications we set e = 1/21()`_ "_ - s)]. We note that I)`_ t - s I = min, I),7" - s I. Similar
analyses for other flow situations lead to the same choice

(4.12) e = 1/2 m!n I)`__- s[,
$

where up is the upstream state. For scalar equations, the equations (4.5), (4.6) and (4.7) are satisfied
exactly for the above artificial viscosity. We note that also for systems (4.5) can be satisfied exactly

if the matrix viscosity E,,, = (A `m - sI)/2 is used. However, E,, is not symmetric. So, even if its

eigenvalues are all positive, Em is not necessarily positive definite.

The scalar artificial viscosity is often chosen proportional to maxi [)`i - s I. Johansson and Kreiss

[8] show that this viscosity indeed suppresses spurious oscillations, but leads to excessive smearing.

They also recommend using mini [)`i - sl, but evaluate the eigenvalue at u, instead of u,,,_, which in

general leads to a larger viscosity.

We show the effectiveness of the artificial viscosity (4.12) for stationary shocks in figures 2a and

2b. They depict the pressure after long time integration of

(4.13) us = -Dof + hD+ED_u

using the RK method (3.34) and the standard conservative scheme. The computations are done for

n = 100, D = Do, a CFL-rnumber of 0.5 and varying Mach number without local grid adaptation.

The numerical solutions are indicated by dotted lines and points in the shock region are highlighted.

The solutions have negligible small amplitude oscillations.

SHOEC scheme We repeat the computations for the SHOEC scheme with artificial viscosity
E

(fl)Do f-( 1 )f,,,Dow+hD+ED__.(4.14) us =- _

The results are shown in figures 3a and 3b, and are similar to those obtained with (4.13). This is

expected as ]wDow ._ Do] and so (4.142 and (4.13) should be close, at least for weak shocks. We
remark that if a Roe-linearization f, - f_ = .4tr(ut --: ur) can be found for the symmetrized Euler
equations, the corresponding matrix viscosity E,,, =_ IA'_ - sII/2 would be symmetric.

Assuming that the shock is located in the interior of the domain, E can be localized to a neighbor-

hood of that shock; outside this region E would be identically zero. This is possible with a switch as

defined in (4.21). Hence,

(4.15) (w,D+ED_w)h = -(D_w, ED_w)h <_ O.

Then, the addition of the term D+ED_w to an entropy conserving scheme will ensure an entropy

inequality, i.e., the modified scheme is entropy stable. In particular, any scalar viscosity E = eI will

imply (4.15) and thus entropy stability.

11
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no viscosity (.), scalar viscosity (-.); (b) M = 2,scalarviscosity

Moving shocks Above, the equations are discretizedon a grid that moves along with the shock,

which isnot the case in reality.Results for scalar equations are stillsatisfactory[5].But, the damping

by the viscositiesisinsufficientfor the Euler equations as illustratedin figure 4a. This solution is

computed with

(4.16) E = 1/2[ A ''_ - sI I - 1/2(QI A M' - sI IQ-1),

where A "_l is the diagonal matrix containing A_ _. For the scalar viscosity ¢ = 1/2mini IAT" - s[ an

identical solution is obtained. We found experimentally that the strong oscillations are primarily

generated in the k-th characteristic variable downstream of the shock. This is in agreement with

the linear analysis by Johansson and Kreiss in [8]. They show that oscillations can appear in all

characteristic variables upstream of the shock, but only in the k-th characteristic variable downstream

of the shock, and that the amplitudes of the latter are generally much larger than those of the former.

The matrix viscosity (4.16) does not introduce much damping on the k-th characteristic variable

as IA_ _ - s[ is smMl. If we increase the damping by replacing this term with A_ t in A 'm in (4.16)

( I A_ t - s l > J A_ t - s l ), the spurious oscillations indeed disappear. The result for this adapted

matrix viscosity is shown in figure 4b.

We therefore choose the scalar viscosity equal to

(4.17)

for moving shocks.

1 A_"

4.3. High order of accuracy. We consider the centered discretizations

(4.18) Q2, = R2, Do, with

r--I

R_, = _.,(-l)"/3,(h_D+D_) ",
y=0

12
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of order 2r. The parameters ]3_ are determined by

_0 = 1,
v

_ - 4u+2fl_-l' u=l,2,...,r-1.

Appropriate approximations of the transformed equation (4.2) with artificial viscosity are

(4.19) R_,. Do (f - su)._ = h R2r D+ E D_ us,

where E and the boundary conditions are as before. In [5] it is shown that (4.19) holds if and

only if (4.3) holds, and the results produced are the same. To take advantage of the high-order

approximation property, we must implement the viscosity locally around the discontinuity. We use

(4.20) R_r Do (f - su) i = h R2_ D+ rj-1/2 E D_ us,

where the switch r is defined by ([7])

( IA+ -zx-" I ) _<<1.(4.21) rj = KIA+,, I + iA_u l + a ,

Hence, r1 = 1 at points where/k+ui and/k_u s are of opposite sign, i.e., at points where the solution

is oscillatory. In smooth flows r_ << 1. We define r_-t/2 = (r__l + r_)/2. By positioning the switch
and artificial viscosity as in (4.20) the viscosity terms are in conservative form.

5. DETECTION WITIt WAVELETS

We want to detect shocks and spurious oscillations to aid the local grid adaptation procedure. The

detection algorithm is based on a wavelet analysis of the pressure grid function. In the first part

of this section we give a brief introduction to discrete wavelet families (5.1), motivate the choice of
wavelet family and explain how the local behavior of a function can be determined from its wavelet

transforms (5.2). The second part deals with implementation issues. The Fast Wavelet Transform

(FWT) algorithm, introduced in 5.3, makes the detection algorithm computationally attractive. In

5.4 we discuss the implications of discrete grid functions, finite domains and the presence of spurious

13
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tl_at = .3, M = 1.5; (a) matrix viscosity (4.16), initial condition (.); (b) adapted
matrix viscosity (o), adapted scalar viscosity (4.17) (+).

oscillations. At the end of the section we give a general outline of the detection algorithm. For
a detailed description of the algorithm, including pseudo-code, we refer to [4]. We recommend

Daubechies' book [3] for a thorough discussion of wavelet theory. The wavelet families used in the
detection algorithm, and the underlying mathematical theory were developed by Mallat, Hwang and

Zhong in [12, 13, 14].

5.1. Wavelets and discrete wavelet families. Roughly speaking a wavelet _(z) is a well localized

function that 'waves' above and below the z-axis such that f _b(z)dz = 0. s Dilations by a E 1_+

and translations by b E/R of the mother wavelet _b(z) generate the wavelet family

1 z-b
-

I1

The parameter b is the center of the wavelet _bo,_, and a represents its scale. A mother wavelet _(z)

and two members of the corresponding wavelet family are depicted in figure 5a. For a > 1 the wavelet

_b_,bstretches and can be viewed as representing a lower frequency, while for a < 1 the wavelet narrows

and represents a higher frequency. Thus, the concepts of scale and frequency are closely related.
The continuous wavelet transform of a function f E L 2 is given by

-/1 f(z) dz, aE/R +,bE/R(5.3) (f' = a a /

The variables<f,Ibo,b)arereferredto asthe waveletcoefficients,and giveinformationon the frequency

content of f near the points b.

SFormally,a function_b(z)issaidto be a waveletifand onlyifitsFouriertransform_(_) satisfies

/o f+oo i_(w)12 d_, C_ <(5.1) = d_ = +oo.oo

This admissibilitvconditzonrequiresthe waveletto havesufficientdecayin thefrequencydomain and that

_(0)= 0,which inturnleadstof tb(z)dz= 0.

14
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FIGURE 5. (a) Different members of the wavelet family; (b) Example of discrete func-

tion f_ and the corresponding continuous function f(x).

For all practical purposes we are, of course, only interested in discrete values for a and b. The

dilation parameter a is discretized as a,_ = 2TM, m E Z, where m represents the level. The correspond-

ing families are referred to as dyadic wavelet families and facilitate the formulation of Fast Wavelet

Transform (FWT) algorithms (Sec. 5.3)

At each level m the wavelet coefficients are computed at the centers bm,,_ = nab, n E Z, where Ab
may depend on m. This gives

- nab.
(5.4) _m,, -= ¢2_.b.... = 2-m¢( x _- ), m C Z.

To ensure that the wavelet coefficients contain enough information to characterize f, the family

consisting of the wavelets ¢,_,, must constitute a .frame [3], i.e., there exist 0 < A < B < cx_ such
that, for all .f e L 2,

A lifll2 <_ I(f,¢._,.)12 -< B Ilfll
m,nEZ

The case when A = B = 1 corresponds to {¢._,.} being a basis. The choice of the mother wavelet
¢(x) and the discretization of b are essentially only restricted by the frame and the admissibility

conditions. The mother wavelet is normally chosen such that it is well concentrated in both the

spatial and the frequency domain.

The detection algorithm is based on a wavelet analysis of the pressure grid function given by the

discrete function f_, with i = 0,..., N-1. Consequently, m and n are bounded; the smallest scale

that can be considered is determined by the grid size h, the largest scale is determined by the size of

the domain, and the maximum number of points at which the wavelet coefficients can be evaluated is

equal to N. Throughout this section, fi is assumed to be the discrete representation of the function

f(x),x E [x0,xlv-1], To facilitate the discussion of the wavelet theory we consider functions f(x)

that can contain discontinuities at x = zi+i/2, represented in the discrete domain by a jump between

fj and f_+l, and local oscillations at x = xk when (fk-1 - h) * (h - h-l) < 0. Otherwise f(x)

is assumed to be slowly varying. An example is given in figure 5b. In section 5.4 we discuss grid

functions that do not adhere to these simplifications, such as smeared shocks, grid functions with

spurious oscillations around shocks, and grid functions that vary sharply in the vicinity of a shock.

5.2. Selection of the discrete wavelet family. The wavelet family is selected based on two
criteria:

(1) There must exist a relation between the behavior of the wavelet coefficients and the local

regularity of f(x).
(2) The ensuing algorithm must be efficient, i.e., the number of wavelet coefficients needed to

determine the local regularity of f(x) with sufficient accuracy should be small.
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For very specialchoicesof _b(x)and with Ab = 2_, the wavelet family _b_,, constitutes an or-

thonormal basis. Many popular wavelet families, e.g. the Haar, Daubechies or Meyer wavelets, are

members of this class. The orthogonal families satisfy the first criterion [3], but fall to meet the

second in this application. To understand this, we observe that shocks and local oscillations may

travel through the flow domain. The detection results should not change because of their movement,

in other words, the wavelet transform should be shift-invariant. Figure 6a shows the centers in part

of the scale-space (a, z) at which wavelet coefficients (], _b,,,,,) are computed in an orthogonal wavelet
analysis. We assume that f has a bounded discontinuity at x, = 0, at which wavelet coefficients are

computed at each scale. If the function is shifted by a distance of, for example, 2_, only one wavelet

coefficient is computed at the new location z, = 2i at the levels shown. Also, the wavelet coefficients

evaluated at positions close to x, change as z, is shifted. In practise, only a finite number of levels

can be evaluated, and we expect that the detection results, which are based on this limited informa-

tion, will change as well. Daubechies shows that indeed a very large number of levels is needed to

accurately compute a for shifted singularities. Specifically, coefficients are needed at scales close to,

or smaller than, the shift, which may not be available. So, orthogonal families are not suitable for

detection purposes in the context of this paper; shift-dependency is unacceptable.

j+3 •

j+2 • •

j+l • • • •
J • • • • • • • • • • • • • • • •

I

0 2i
X Xo

(a) (b)

C(Xo_

......... ..' \ .........

2K

FIGURE 6. (a) Lattice of wavelet centers for orthogonal families; (b) Cone of influence
of Xo.

Clearly, shift dependency can be avoided if the wavelet coefficients are computed at the same points

at all scales, in other words, if Ab = constant. This constant, which represents the smallest scale

possible, is determined by the grid size. Because the grid size h is not necessarily equal to a power or

inverse power of 2, we normalize the smallest scale h to 1 (corresponding to m = 0). Then, Ab = 1

in (5.4), which gives

2 m .,X--n,
(5.5) = - m _>o.

This normalization is used in the remainder of the paper•

Having thus abandoned orthogonality, freedom in the design of the mother wavelet is gained. The

question is if this freedom can be used to construct non-orthogonal families that satisfy the two

criteria given above. Mallat and Hwang [13] showed that this is possible if the mother wavelet _p(x)

has compact and symmetric support [-K, K] for K > 0, and if it is a derivative of a smoothing

function. Henceforth, all mother wavelets are assumed to be in this class. A smoothing function 0(x)
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is defined as a differentiable function that satisfies

(5.6) O(x) > 0, /0(x) dx= 1, and lim
dkO(x)

::--.±oo dxk - 0, k = 1,2, ....

From (5.6) it follows that f ¢(x)dx = 0 for ¢(x) - dkO/dx k with k > 0. Provided _b(x) has sufficient
decay in the frequency domain, it will satisfy the admissibility condition (5.1).

For such mother wavelets the local regularity of f(x) can be computed from a small and easy-to-
determine set of wavelet coefficients. The local regularity of a function is measured in terms of its

Lipschitz exponent c_, whose definition is given in appendix C. From this definition it follows that a

continuous function has a Lipschitz exponent _ > 0, a bounded discontinuity (shock) is Lipschitz 0,

and a Dirac function (local oscillation) has a Lipschitz exponent (_ = -1. For ease of presentation,

the theorem is presented for continuous wavelet families ¢,,b = 1¢(_-_), a 6/R+,b 6/R. First we
make the following observation. If the support of the mother wavelet ¢ is equal to I-K, K], ¢,,b has

support [b- Ka, b + Ka]. Thus, at any scale a, the function value f(xo) will influence the wavelet

coefficients (f, ¢_,b) computed at the centers b in the set

(5.7) S(a, xo;g) - {b : Ib-x01< ga).

The region C(x0; K) = U,{a} x S(a, x0; K) is referred to as the cone of influence of x0 (figure 65). It is

intuitive to think that the local regularity of f at x0 should be determined by the wavelet coefficients

evaluated at centers in C(x0; K). Mallat and Hwang [13] proved that this is true for the functions

f(x) considered in this paper. Mallat strengthened the result further in the following theorem:

Theorem 5.1. Let 0 be a smoothing function and let _l,k(x) = dkO(x)/dx k,k > 0 have compact

support [-K, K]. Let b = B(a) be a curve in the cone of influence of Xo, with B(a) _ Xo as a _ 0

(figure 6b). The function f is Lipschitz a < k at Xo, if there exists a constant C > 0 and a scale h

such that along any B(a)

(5.8) < Ca °, va < a.

Define a modulus maximum at the scale a as a local maximum of [( f, ¢_,b )1 in b. The points b at
which the modulus maxima are attained are referred to as the maximum points at scale a. If f has

an isolated discontinuity at xo, there exist a scale 5 and a curve b = BM(a) such that for all a < h,

BM(a) are maximum points. Such curves are referred to as maximum lines. The Lipschitz exponent

of f at xo is determined by (5.8) evaluated along the maximum line converging to Xo.

A similar theorem also holds for dyadic families, with a,n = 2m, and b 6/R [15, 14]. However, we

cannot compute coefficients at scales smaller than 1, nor at positions other than the grid points. Thus,

we presume that the decay of the available wavelet coefficients at scales larger than 1 characterizes the

regularity of the function. If this is not the case, the mesh must be refined (decreasing h). The second

part of the theorem makes the wavelet detection computationally attractive; the Lipschitz exponent

a at a point x0 can be estimated from a limited number of wavelet coefficients. At a sequence of

levels m, where 1 _< m _< mm,_ <_ log2(N ), we compute the wavelet coefficients at the grid points.

Next, we find the modulus maxima at each level and locate maximum lines that converge on the scale

of the grid. Then, we determine a such that

(5.9) log2 I<f, ¢_,.)1 = log_ C + m a,

as close as possible, in a least squares sense, for the wavelet coefficients along the select maximum
lines.

As an example, figure 85 shows a signal with several points of distinct behavior, and the wavelet

coefficients computed with the detection algorithm at increasing levels j,j + 1, .... If the Lipschitz

exponent c_ is positive, the amplitude of the modulus maxima increases with j. The smooth variation
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points 1 and 4 exhibit this behavior.The singularityat 3 producesmodulusmaximathat decrease
asthe scaleincreases,sosup(a) < 0. Theamplitudesof themodulusmaximacorrespondingto point
2 donot changeand weconcludethat sup(a) = 0.

The parameterk limits the maximum Lipschitz exponent that can be determined. As we are

interested in detecting discontinuities (a = 0) and spurious oscillations (a < 0), we choose k = 1.
We remark that for k = 1, a direct connection exists between the wavelet detection and detection

algorithms that search for maxima in derivatives. Define 0o,b -- a-10(_-_). The function 0a,b is a
smoothing function also as f O,,,b(X)dx = f O(x)dx = 1. Furthermore,

dO_,b
= a d--:-'

so that

dOa,b d
(5.10) ( f, Ca,b ) = ( f, a _ ) -- -a_( f, Oa,6).

In other words, the wavelet transform is the first derivative of the function f smoothed at the scale

a by O,,,b. So, detecting modulus maxima corresponds to detecting maxima in derivatives. It fol-
lows that a discontinuity has one maximum line converging to its location as the derivative of the

smoothed function will have an absolute maximum at this position. A Dirac function naturally has
two maximum lines. Furthermore, we note that the wavelet coefficients provide an estimate of the
jump [f]_ at scale a across the shock:

(5.11) I[f],.I = a I[fl ,l a
a

which can be used as an extra criterion for shock selection.

-](f,¢=,b )],

5.3. The Fast Wavelet Transform. For special ¢(x) the wavelet transformations can be per-

formed through fast discrete filter operations [4, 14]. Given two sequences {gk}k and {h_}k, we

define Gm = {g_}: and H_, = {hT_}t as the sequences constructed by putting (2m-1--1) zeros between

the elements of, respectively, {g_ }k and {hk }k. Also, }Nm --=( (f, era,,)}, is defined as the sequence of

wavelet coefficients at level m. It can be shown that certain ¢(x) possess sequences {g_}k and {hk}_
such that the wavelet coefficients at the levels m > 1 can be computed by the discrete convolutions

(5.12) )4],n = _-_'_'G,n * Sin-1
Sm = Hm.Sm_l , m = 1,2,...

where the sequence $0 contains the grid function values fi. The sequences Sm represent smoothed

versions of f at level m, whereas )_m can be seen as representing the details lost in this smoothing
process. For this reason, the sequence {h(k)}k is referred to as the impulse response of a low pass filter

and {g(k)}t as the impulse response of a high pass filter. The finite resolution of f(x) necessitates the

scaling by the parameters Am. If the sequences 8m were available at all levels m < 0 (for am _ 0), the
scaling parameters would not be needed. We refer to [4] for full details concerning their derivation.

At each level m, we perform O(n) operations. The maximum number of levels is equal to logs(n ).
For detection purposes it is sufficient to compute the wavelet coefficients at a total of four or five

levels. Therefore, the overall detection algorithm is O(n). In the detection algorithm we use the

mother wavelet depicted in figure 8b. It is a quadratic, anti-symmetric spline with compact support
[-1, 1] given by

(5.13) ¢(x) =
2(x + 1)

-4z(1 + z) - 2x 2

-4x(1 - x) + 2X2

1)

-1 < x < -1/2
-1/2 < x < 0

0 _< x < 1/2
1/2 _< x < 1
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Its filter coefficientshk and g_, and the scaling

symmetry is obtained by applying a shift of 1/2 to

parameters _,_ are given in table 7.

Wm.

Filter Coefficients Scaling parameters

k hk gk m A,_ m _,,
-1 0.125 1 2 5 1.336

0 0.375 -2.0 2 1.5 6 1.334
1 0.375 2.0 3 1.375 7 1.333

2 0.125 4 1.344 > 7 1.333

FIGURE 7. Filter coefficients and scaling parameters for the spline wavelet

Note that

original signal

j+l

'1 '2 '3

0.5

A o
V

A A

V V _,
(a)

i

0

(b)

FIGURE 8. (a) Example wavelet transformation; (b) The spline wavelet _b

5.4. Implementation issues. The pressure grid function fi may be distorted by spurious oscilla-
tions around the shock. They are characterized by wavelength L, L _> 2h and amplitude r. Figure 9a

shows the damping factors rH/r and rnH/r, where rH and rltH are the amplitudes of the smoothed

oscillations after respectively one and two applications of H. Oscillations with a wavelength L = 2h
are removed immediately, and oscillations with short wavelengths are dampened quickly. Therefore,

the oscillations have little and negligible effect on the computation of the Lipschitz coefficient a if we

use levels m _> 2 in (5.9). An example is given in figure 9b. It shows a pressure distribution obtained
from a central finite difference scheme applied to the Euler equations. The oscillations are prominent

at the smallest scale but quickly disappear. Note that the jump ][f]] across the shock is accurately

represented by the wavelet coefficients.
If a shock is smeared, the estimated Lipschitz exponent will be larger than zero. However, as the

scale increases, the modulus maxima will quickly converge to a constant, equal to the total jump over
the smeared shock. For one-- and two-point shocks, the correct Lipschitz exponent can generally be

detected from the modulus maxima at the levels m > 3. Otherwise, local oscillations and/or large

magnitudes of the wavelet coefficients at the larger scales will indicate that there is a steep gradient

necessitating local grid refinement. We remark that as a result of local grid refinement and an efficient

artificial viscosity, smearing is generally not an issue at the coarser scales.

19



1

0.8

i
l

0,_

z
i

z

i

i

i

J

.. T_H - r~HH

A

Maxima Wavelet Coefficients

(a) (b)

FIGURE 9. (a) Damping Factors Filter H, and (b) Wavelet coefficients (f, ¢,,,,n) cor-
responding to an oscillatory grid function fl.

If the grid function varies sharply close to a discontinuity, the Lipschitz exponent will also be

perturbed. However, the grid adaptation procedure will refine the grid locally as the detection

algorithm will pick up local oscillations. At the finest scales, the variation in the grid function close

to the shock will not be as strong and the discontinuity can again be detected with sufficient accuracy.

As the discrete domain is finite, we need to periodize f_. To avoid the introduction of artificial

shocks at the boundary, the finite discrete domain is extended by reflection according to

(5.14) fi = f2,-_, for n < i < 2n-1.

Although the reflected image is continuous at the boundary, its derivative may not be so. At the

boundary itseff this will not cause any problems because the filter G is anti-symmetric. In the local

grid adaptation procedure, we ensure that the shocks axe located in the interior of the (refined) grids,
and that the flow varies smoothly near the boundaries. Therefore, the cusp or kink resulting from

a discontinuous boundary derivative will be very small and will have negligible effect on the wavelet
coefficients in the domain interior.

Approximations to the shock states u_ and ur axe needed to construct the artificial viscosity. If no

local spurious oscillations are present, this task is trivial once the shock location is known. Otherwise,

the data at the scale of the grid is distorted and we approximate ft. and .fR from the smoothed data
8,_ at scales m > 1.

We summarize the findings concerning the choice of the wavelet family:

• The family is dyadic for computational purposes.

• The family is redundant to obtain shift-invariance.

• The mother wavelet is compact, differentiable and the first derivative of a smoothing function
so that theorem 5.1 is valid.

• A Fast Wavelet Transform exists, leading to an O(n) detection algorithm.

Below, a general outline of the detection algorithm is given with references to the relevant equations,
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theoremsandsections.

A general outline of the detection algorithm

Periodize the grid function fi by reflection.

Compute (f, era.,) in the extended domain at
the scales a,_ = 2 m, m = 1,..., m,,o_ with a
Fast Wavelet Transform.

Eqs. (5.12),(5.12),
Table 7

Locate the maxima of I<f,_bm,,)l at each
scale.

Determine the converging maximum lines. Thm. (5.1)

Compute the Lipschitz exponents from the
evolution of the wavelet coefficients along the

converging maximum lines.

Eq. (5.9)

Locate shocks, sharp gradients and spurious Sec. 5.2, 5.4
oscillations.

High order of accuracy

The initial conditions

6. NUMERICAL RESULTS

(6.1) u(x,O) =
1 + 0.5 cos(87rx) )

ul(z,O)
1+  ul(x,0)

with periodic boundary conditions, correspond to the linear advection of a cosine density wave. The

velocity and pressure are equal to 1 and remain constant in time. This test problem is chosen to

illustrate the advantage of difference operators with a high order of accuracy. The flow is smooth and

therefore solved without local grid adaptation or artificial viscosity. Figure 10 depicts the solutions
at t = 0.3 obtained for the SHOEC scheme with the sixth and second order difference operators given

in the appendix 4, and the first order Godunov scheme for 50 grid points.

To achieve the same accuracy as the sixth order scheme, a minimum of 250 grid points is needed

for the second order scheme and at least 2000 grid points for the first order scheme.

Shock detection, artificial viscosity and high order of accuracy

4Note that because of the periodic boundary conditions the global accuracy is sixth and second order
respectively as well
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FIGURE 10. Solid line exact solution, 6th order (-.), 2nd order (.), 1st order (-).

We consider the initial condition

(6.2) u(x,0) =

3.857143 )
10.141852

39.166666
x< -4

[ l+0.2sin5x0 x _> -4
2.5

A strong shock wave, moving to the right, interacts with a sine wave_0f small amplitude. The
shock speed 8 = 3.55, resulting in a Mach-number M ,_ 3 in front of the shock. The difficulty lies
in resolving the low and high frequency oscillations that are formed behind the shock wave in the

density. This problem is a good test for resolution, as well as the detection algorithm and artificial

viscosity. The solution is not known analytically. For comparison, an "exact" solution is computed

using a formally conservative 4-th order central scheme with n = 2000 (no grid adaptation) and
t = 1. The conservative form will ensure that the shock location is correct. The density is shown in

figure lla. Again, the computed solution is indicated by a dashed line and the points in the shock
are highlighted. The shock is resolved very sharply which illustrates the effectiveness of the artificial
viscosity.

Figures llb and c show the coarse grid solutions for a fourth order SttOEC scheme (sixth order
in interior and third order at the boundary) obtained for n = 200 and n = 68 respectively. We used

local grid adaptation and one level of refinement (n is the number of coarse grid points). The shock
location is determined with the detection algorithm; a priori knowledge of the shock speed is not
used. The ratio of fine to coarse grid points is 4 for n = 200 and 8 for n = 68. We used the 4th order

SHOEC scheme whose difference operator is given in appendix B (6th order in interior, 3rd order on

the boundary). In figure lld we depict the location of the fine grid relative to the coarse grid as time

progresses for n = 200. The true and detected shock locations coincide. Clearly, the refined grid is

confined to the shock region. The variations in fine grid size are due to spurious local oscillations

away from the shock that are detected and included in the fine grid. The solution for n - 200 is very

accurate. For n = 68 the fine grid solution is good and on the coarse grid the principal features of the

flow are clearly visible. The average number of coarse and fine grid points in this last computation
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is 150.The computationtook approximately8%of the time for n = 2000. The detection algorithm

and the regridding procedure only accounted for 5% of the total time.
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FIGU RE 1 1. Density (a) conservative scheme, n = 2000; (b)+(c) local grid adaptation

SHOEC scheme, coarse grid (-), fine grid (.), coarse grid point (o), fine grid point (+),

true shock location (*); (b) n = 200; (c) n = 68; (d) Position of refined grid, n = 200,

true and computed shock position (*).

7. CONCLUSIONS

We have presented a high order scheme for the Euler equations that satisfies a semi-discrete

energy estimate, as well as an efficient strategy for computing sharp shock solutions. The high order

of accuracy of this Split High-Order Entropy Conserving (SHOEC) scheme leads to a very efficient
scheme for flows that are smooth in large regions of the flow domain. The construction of the SHOEC

scheme is based on a symmetrization of the equations, followed by a canonical splitting of the flux

vector, and difference ope, ators that satisfy a summation by parts principle. The same techniques

can be applied to other systems of conservation laws that satisfy the cone condition, mentioned in
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section 3. We are currently developing a SHOEC scheme for mixed hyperbolic-parabolic equations
in ocean modeling.

Although the scheme is in a non-conservative form, the shock location obtained in numerical

experiments is correct and converges with h. This is illustrated in figure 1. In [21], Salas and Iollo
formulated shock jump conditions for the Euler equations in their primitive, non-conservative, form.

Jump conditions for the symmetrized split Enler equations are being investigated. Their existence

may lead to an analytical explanation for the correct shock speed.

We constructed a cheap and effective scalar artificial viscosity that is used in locally refined grid

in shock regions. It results in sharp shock resolution. The positioning of the finer sub-grids is aided

by a detection algorithm based on a multi-scale wavelet analysis of the pressure grid function. The

algorithm detects shocks and local oscillations efficiently. No a-priori knowledge of the shock location
is used and the resulting method is therefore shock capturing. The obtained information on the shock

position is used only in positioning the sub-grids and constructing the artificial viscosity. It could

prove to be useful in other applications as well. As an example, we mention the high-order methods
by LeVeque and Shuye [11] that need an accurate shock location.

The sharp shock resolution and computational efficiency of the above described SHOEC-scheme

with local grid adaptation are illustrated by the numerical experiments.

The SHOEC scheme, artificial viscosity and shock detection are generalizable to multi-dimensions.

In a forthcoming paper we will present numerical results for multidimensional applications in which

we use the technique of overlapping grids as well as local grid adaptation.

APPENDIX A. SYMMETRIZATION

For h(S) = esl(_+_),

P* r O/- 1
w = --LE+- i-pp 7 -- m P ]T,

where

P rn'_

-?(RE + (a- 1)Rp)

RE + (2- (7+ 1)R)p

-_(kE+(a-1)Rp) RE+(2-(7+I)R)p

-p + i ,n
k,n kp

Here, p* and p are related through equations (3.30) and (3.32),R = 1/(a + 7) and k = (R- 1)( 7 - 1).
For a = (1 - 27), w is a homogeneous function of degree 1 in u, and

[ I(E(E_ m_ _ ,,_

7 "-;) + "_-1p(P+ Y;))
_--(_ - E) _6 _ m___

_(1__)r m

E) _(1--_)P- E

,

-p

The flux vector

= 7--O_ , ]T.
w_(Wl -_- ---__ _p )7
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The symmetric matrix ](w)w is given by

j_ 1m

p*

Cm

C pv 2 - p

v( pv2_ )

where C = (1 - a - 7)/a•

C pv _ - p

v(Cpv _ - 3p)

T pv _-1 p -

- )
C n_4 __7___ (3_ _ ..3..__2
2 r- -- 7-1rho -- _,2 " 7-1r v

V(_(1-2T) P_-- -l- (1-2_)_)V2 -k C'._,4_
\ (3'--1) _ p " 3'-1 k" -- 4t'_ ]

APPENDIX B. DIFFERENCE OPERATORS

We use difference operators that satisfy the summation by parts

(B•I) (u, Dw)h = u_w, - uTwo- (Du, w)h,

for arbitrary discrete grid vectors u and w, with respect to the weighted scalar product

n

(B•2) (u,w)h = h _ a,._u_wl.
i j=0

The scalar product can also be written as

(B•3) (u,w)h = huWEw.

To establish the semi-discrete estimate for the Euler equations, _ must be diagonal [19]• In [9],

Kreiss and Scherer showed that there exist diagonal _ and difference operators D of accuracy 2p

in the interior, 1 _< p _< 4, such that the summation-by-parts property (B.1) holds. The difference

operators D and matrices _ are computed in [23].

The simplest example is the second order accurate difference operator

D

-1

-0.5
1

1

0 0.5

** •o•

-0.5 0 0.5

-1 1

with

0.5

1

1

0.5

A sixth order accurate difference operator D with third order boundary closure is given by

( nu)._ =

I 1 i=8

; _,=0 diiui

, + ;%.__+ _u_+_- _tt_+2+ _tt_+3)

1 _"_i=8 dji_n_ iz-.,i=O

j=0,...,5

5<j<n-5

j=n-5,...,n
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The values of dji, 0 _< j _< 5,0 _< i _< 8 are given below.

aii= 0, i # j. Its diagonal elements ail = ai are

The corresponding Z is diagonal, i.e.

13649/43200

12013/8640

2711/4320
5359/4320

7877/8640

43801/43200

UO -- O.n =

0"1 _ O'n - 1 --

0"2 -" O'n - 2 =

0"3 = Un - 3 _-"

0"4 --" O'n - 4 =

0"5 = O'n - 5 =

and

a s = 0 5<j<n-5

See [23] for a

d00 = -21600/13649 dol = 81763/40947 dos = 131/27298

d03 = -9143/13649 d04 = 20539/81894 do5 = 0
do6 = 0 d07 = 0 do8 = 0

dl0 = -81763/180195 dll = 0 dl_ = 7357/36039

d13 = 30637/72078 d14 = -2328/12013 dis = 6611/360390
d16 "- 0 d17 = 0 dis : 0

d20 = -131/54220 d_l = -7357/16266 d22 = 0

d23 = 645/2711 d24 = 11237/32532 d25 = -3487/27110
d26 = 0 d27 = 0 d2s = 0

d3o = 9143/53590 61 = -30637/64308 6_ = -645/5359

daa = 0 da4 = 13733/32154 da5 = ..-67/4660
da6 = 72/5359 d3_ = 0 das = 0

d4o = -20539/236210 d41 = 2328/7877 d42 = -11237/47262

d4a = -13733/23631 d44 = 0 d45 = 89387/118155

d46 = -1296/7877 d47 = 144/7877 d48 = 0

dso = 0 ds1 = -6611/262806 ds_ = 3487/43801

dsa = 1541/87602 d54 = -89387/131403 ds5 = 0

d56 = 32400/43801 dsv = -6480/43801 dss = 720/43801

derivation of the coefficients.

APPENDIX C. LIPSCHITZ EXPONENT

Definition C.1 (Lipschitz exponent). Let 0 < a < 1.

(1) A functionf(x),definedon a domain 7)1 C/R, isLipschitza over an interval

(xz,zr) C D/, ifand only ifthereexistsa constantC < o0 such that forallz,y • (xt,zr)

If(x)- I(Y)I < C Ix- yl_.

(2) A functionf(x) isLipschitza at a pointz0,ifand only ifthereexistsa constantC < oo such
that

sup If(x)-f(x0)[ < C.
Ix-xol ° -

(3) A function that is not Lipschitz 1 at a point xo is said to be singular at that point.

(4) A distribution is Lipschitz a over an interval (xt, x,.), if and only if its primitive is Lipschitz

+ i on (z. x_).
(5) A distribution f(z) has an isolated singularity Lipschitz a at a point x0, if and only if f(z) is

uniformly Lipschitz a over an interval (z_, x_) with xo • (xz, z_), and f(x) is Lipschitz 1 over

any subinterval of (xt, x_) that does not include z0.
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